

Turing Machines
Part Two

Outline for Today
● The Church-Turing Thesis

– Just how powerful are TMs?
● What Does it Mean to Solve a

Problem?
– Rethinking what “solving” a problem

means, and two possible answers to that
question.

Recap from Last Time

Turing Machines
● A Turing machine is a program that controls a

tape head as it moves around an infinite tape.
● There are six commands:

– Move direction
– Write symbol
– Goto label
– Return boolean
– If symbol command
– If Not symbol command

● Despite their limited vocabulary, TMs are
surprisingly powerful.

A Sample Turing Machine
● Here’s a sample TM.
● It receives inputs over the

alphabet Σ = {a, b}.
● What strings does this TM

accept?
● Can you write a regex

that matches precisely the
strings this TM accepts?

Start:
 If Not 'a' Return False

Loop:
 Move Right
 If Not Blank Goto Loop
 Move Left
 Move Left
 If Not 'b' Return False
 Return True

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

What Can We Do With a TM?
● Last time, we saw TMs that

– check if a string has the form anbn,
– check if a string has the same number of a’s and b’s and
– sort a string of a’s and b’s.

● Here’s a list of some other things TMs can do; we’ll give
you these TMs with the starter files for PS8 this week.
– Check if a number is a Fibonacci number.
– Convert the number n into a string of n a’s.
– Check if a string is a tautonym (the same string repeated twice).
– So much more!

● This hints at the idea that TMs might be more powerful
than they look.

New Stuff!

Main Questions for Today:

Just how powerful are Turing machines?

What problems can you solve with a computer?

Real and “Ideal” Computers
● A real computer has memory limitations: you

have a finite amount of RAM, a finite amount of
disk space, etc.

● However, as computers get more and more
powerful, the amount of memory available keeps
increasing.

● An idealized computer is like a regular
computer, but with unlimited RAM and disk
space. It functions just like a regular computer,
but never runs out of memory.

Theorem: Turing machines are equal in
power to idealized computers. That is,
any computation that can be done on a

TM can be done on an idealized computer
and vice-versa.

Key Idea: Two models of computation
are equally powerful if they can

simulate each other.

Simulating a TM
● The individual commands in a TM are simple and

perform only basic operations:
Move Write Goto Return If

● The memory for a TM can be thought of as a string
with some number keeping track of the current index.

● To simulate a TM, we need to
– see which line of the program we’re on,
– determine what command it is, and
– simulate that single command.

● Claim: This is reasonably straightforward to do on an
idealized computer.
– My “core” logic for the TM simulator is under fifty lines of

code, including comments.

Simulating a TM
● Because a computer can simulate each

individual TM instruction, an idealized
computer can do anything a TM can do.

● Key Idea: Even the most complicated
TM is made out of individual
instructions, and if we can simulate
those instructions, we can simulate an
arbitrarily complicated TM.

Simulating a Computer
● Programming languages provide a set of simple

constructs.
– Think things like variables, arrays, loops, functions,

classes, etc.
● You, the programmer, then combine these basic

constructs together to assemble larger
programs.

● Key Idea: A TM is powerful enough to simulate
each of these individual pieces. It’s therefore
powerful enough to simulate anything a real
computer can do.

A Leap of Faith
● Claim: A TM is powerful enough to simulate any

computer program that gets an input, processes
that input, then returns some result.

● The resulting TM might be colossal, or really slow,
or both, but it would still faithfully simulate the
computer.

● We're going to take this as an article of faith in
CS103. If you curious for more details, come talk to
me after class.

Computational
Device

Yep

Nah

input

Can a TM Work With…

Sure! A picture is
just a 2D array of
colors, and a color
can be represented

as a series of
numbers.

“cat pictures?”

Can a TM Work With…

If you think about
it, a video is just a
series of pictures!

“cat videos?”
“cat pictures?”

Can a TM Work With…

Sure! Music is encoded as a
compressed waveform. That’s

just a list of numbers.

“music?”

Sure! That’s just applying a
bunch of matrices and

nonlinear functions to some
input.

“ChatGPT?”

Just how powerful are Turing machines?

The Church-Turing Thesis claims that

every feasible method of computation
is either equivalent to or weaker than

a Turing machine.

“This is not a theorem – it is a
falsifiable scientific hypothesis.
And it has been thoroughly
tested!”

- Ryan Williams

Regular
Languages CFLs

All Languages

Problems
Solvable by

Turing
Machines

Time-Out for Announcements!

Problem Set 8
● Problem Set Seven was due today at 1:00PM.

– You can use a late day to extend the deadline to 1:00PM on
Saturday.

● Problem Set Eight goes out today. It’s due next Sunday at
1:00PM, but designed so that it can be completed by next
Friday.
– Construct context-free grammars and explore their expressive

power.
– Dive deeper into the structure of languages and functions

between languages.
– Tinker with TMs and what it’s like to build all computation from

smaller pieces.
● You know the drill: come talk to us if you have any

questions, and let us know what we can do to help out.

Grand River Solutions Email
● We’re part of Stanford’s exam proctoring

pilot this quarter. The consultancy Grand
River Solutions is assisting with the
rollout.

● You should have received an email asking
for your feedback. The AIWG would
appreciate your input, and it should take
at most five minutes to fill out.

Back to CS103!

Decidability and Recognizability

What problems can we solve with a computer?

What does it
mean to “solve”
a problem?

The Hailstone Sequence
● Consider the following procedure,

starting with some n ∈ ℕ, where n > 0:
– If n = 1, you are done.
– If n is even, set n = n / 2.
– Otherwise, set n = 3n + 1.
– Repeat.

● Question: Given a natural number n > 0,
does this process terminate?

11

34

17

52

26

13

40

20

10

5

16

8

4

2

1

· If n = 1, stop.

· If n is even, set n = n / 2.

· Otherwise, set n = 3n + 1.

· Repeat.

The Hailstone Sequence
● Consider the following procedure, starting with

some n ∈ ℕ, where n > 0:
– If n = 1, you are done.
– If n is even, set n = n / 2.
– Otherwise, set n = 3n + 1.
– Repeat.

● Does the Hailstone Sequence terminate for…
– n = 5? Yes, after 5 steps.
– n = 20? Yes, after 7 steps.
– n = 7? Yes, after 16 steps.
– n = 27? Yes, after 111 steps.

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

The Hailstone Turing Machine
● Let Σ = {a} and consider the language

 L = { an | n > 0 and the hailstone
 sequence terminates for n }.

● We can build a TM for L as follows:
If the input is ε, reject.
While the string is not a:

If the input has even length, halve the length of
the string.
If the input has odd length, triple the length of
the string and append a a.

Accept.

Does this Turing machine accept all
nonempty strings?

The Collatz Conjecture
● It is unknown whether this process will

terminate for all natural numbers.
– In other words, no one knows whether this TM

always terminates!
● The conjecture (unproven claim) that the

hailstone sequence always terminates is called
the Collatz Conjecture.

● This problem has eluded a solution for a long
time. The influential mathematician Paul Erdős
is reported to have said “mathematics may not
be ready for such problems.”

An Important Observation
● Unlike finite automata, which automatically halt

after all the input is read, TMs keep running
until they explicitly return true or return false.

● As a result, it’s possible for a TM to run forever
without accepting or rejecting.

● This leads to several important questions:
– How do we formally define what it means to build a

TM for a language?
– What implications does this have about problem-

solving?

Very Important Terminology
● Let M be a Turing machine.
● M accepts a string w if it returns true on w.
● M rejects a string w if it returns false on w.
● M loops infinitely (or just loops) on a string w if when run on w

it neither returns true nor returns false.
● M does not accept w if it either rejects w or loops on w.
● M does not reject w w if it either accepts w or loops on w.
● M halts on w if it accepts w or rejects w.

Accept
Loop

Reject
does not accept

does not reject

halts

● A TM M is called a recognizer for a language L over Σ if
the following statement is true:

∀w ∈ Σ*. (w ∈ L ↔ M accepts w)
● A language L is called recognizable if there is a

recognizer for it.
● If you are absolutely certain that w ∈ L, then running a

recognizer for L on w will (eventually) confirm this.
– Eventually, M will accept w.

● If you don’t know whether w ∈ L, running M on w may
never tell you anything.
– M might loop on w – but you can’t differentiate between “it’ll

accept if you wait longer” and “it will never come back with an
answer.”

● Does this feel like “solving a problem” to you?

Recognizers and Recognizability

● The hailstone TM M we saw earlier is a recognizer
for the language

L = { an | n > 0 and the hailstone
 sequence terminates for n }.

● If the sequence does terminate starting at n, then
M accepts an.

● If the sequence doesn’t terminate, then M loops
forever on an and never gives an answer.

● If you somehow knew the hailstone sequence
terminated for n, this machine would (eventually)
confirm this. If you didn’t know, this machine
might not tell you anything.

Recognizers and Recognizability

● Earlier this quarter you explored sums of
five cubes. Now, let’s talk about sums of
three cubes.

● Are there integers x, y, and z where…
– x3 + y3 + z3 = 10? Yes! x = 2, y = 1, z = 1.
– x3 + y3 + z3 = 11? Yes! x = 3, y = -2, z = -2.
– x3 + y3 + z3 = 12? Yes! x = 7, y = 10, z = -11.
– x3 + y3 + z3 = 13? Nope!

Recognizers and Recognizability

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

● Surprising fact: until 2019, no one knew
whether there were integers x, y, and z where

x3 + y3 + z3 = 33.
● A heavily optimized computer search found this

answer:
x = 8,866,128,975,287,528
y = -8,778,405,442,862,239
z = -2,736,111,468,807,040

● As of May 2024, no one knows whether there
are integers x, y, and z where

x3 + y3 + z3 = 114.

Recognizers and Recognizability

● Consider the language
L = { an | ∃x ∈ ℤ. ∃y ∈ ℤ. ∃z ∈ ℤ. x3 + y3 + z3 = n }

● Here’s pseudocode for a recognizer to see whether such
a triple exists:

for max = 0, 1, 2, …
 for x from -max to +max:
 for y from -max to +max:
 for z from -max to +max:
 if x3 + y3 + z3 = n: return true

● If you somehow knew there was a triple x, y, and z
where x3 + y3 + z3 = n, running this program will
(eventually) convince you of this.

● If you weren’t sure whether a triple exists, this
recognizer might not be useful to you.

Recognizers and Recognizability

Recognizers and Recognizability
● The class RE consists of all recognizable languages.
● Formally speaking:

RE = { L | L is a language and there’s a recognizer for L }
● You can think of RE as “all problems with yes/no

answers where “yes” answers can be confirmed by a
computer.”
– Given a recognizable language L and a string w ∈ L, running a

recognizer for L on w will eventually confirm w ∈ L.
– The recognizer will never have a “false positive” of saying

that a string is in L when it isn’t.
● This is a “weak” notion of solving a problem.
● Is there a “stronger” one?

Deciders and Decidability
● Some, but not all, TMs have the following

property: the TM halts on all inputs.
● If you are given a TM M that always halts, then

for the TM M, the statement “M does not
accept w” means “M rejects w.”

Accept

Reject
 halts (always)

does not accept

does not reject

Deciders and Decidability
● A TM M is called a decider for a language L over Σ if the

following statements are true:
∀w ∈ Σ*. M halts on w.

∀w ∈ Σ*. (w ∈ L ↔ M accepts w)
● A language L is called decidable if there is a decider for it.
● A decider M for a language L accepts all strings in L and

rejects all strings not in L.
● A decider M for a language L is a recognizer for L that halts

on all inputs.
● Intuitively, if you don’t know whether w ∈ L, running M on w

will “create new knowledge” by telling you the answer.
● This is a “strong” notion of “solving a problem.”

Deciders and Decidability
● While no one knows whether there are

integers x, y, and z where
x3 + y3 + z3 = 114,

it is very easy to figure out whether there
are integers x, y, and z where

x2 + y2 + z2 = 114.
● Take a minute to discuss – why is this?

● Consider the language
L = { an | ∃x ∈ ℤ. ∃y ∈ ℤ. ∃z ∈ ℤ. x2 + y2 + z2 = n }.

● Here’s pseudocode for a decider to see whether
such a triple exists:

for x from 0 to n:
 for y from 0 to n:
 for z from 0 to n:
 if x2 + y2 + z2 = n: return true
return false

● After trying all possible options, this program will
either find a triple that works or report that none
exists.

Deciders and Decidability

Deciders and Decidability
● The class R consists of all decidable languages.
● Formally speaking:

R = { L | L is a language and there’s a decider for L }
● You can think of R as “all problems with yes/no

answers that can be fully solved by computers.”
– Given a decidable language, run a decider for L and see what

happens.
– Think of this as “knowledge creation” – if you don’t know

whether a string is in L, running the decider will, given
enough time, tell you.

● The class R contains all the regular languages, all the
context-free languages, most of CS161, etc.

● This is a “strong” notion of solving a problem.

R and RE Languages
● Every decider for L is also a recognizer for L.
● This means that R ⊆ RE.
● Hugely important theoretical question:

R ≟ RE
● That is, if you can just confirm “yes” answers to

a problem, can you necessarily solve that
problem?

Regular
Languages CFLs

All Languages

R

RE

Which Picture is Correct?

Regular
Languages CFLs

All Languages

R RE

Which Picture is Correct?

Unanswered Questions
● Why exactly is RE an interesting class of

problems?
● What does the R ≟ RE question mean?
● Is R = RE?
● What lies beyond R and RE?
● We'll see the answers to each of these in

due time.

Next Time
● Emergent Properties

– Larger phenomena made of smaller parts.
● Universal Machines

– A single, “most powerful” computer.
● Self-Reference

– Programs that ask questions about
themselves.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

