
  

Turing Machines
Part Two



  

Outline for Today
● The Church-Turing Thesis

– Just how powerful are TMs?
● What Does it Mean to Solve a 

Problem?
– Rethinking what “solving” a problem 

means, and two possible answers to that 
question.



  

Recap from Last Time



  

Turing Machines
● A Turing machine is a program that controls a 

tape head as it moves around an infinite tape.
● There are six commands:

– Move direction
– Write symbol
– Goto label
– Return boolean
– If symbol command
– If Not symbol command

● Despite their limited vocabulary, TMs are 
surprisingly powerful.



  

A Sample Turing Machine
● Here’s a sample TM.
● It receives inputs over the 

alphabet Σ = {a, b}.
● What strings does this TM 

accept?
● Can you write a regex 

that matches precisely the 
strings this TM accepts?

Start:
    If Not 'a' Return False

Loop:
    Move Right
    If Not Blank Goto Loop
    Move Left
    Move Left
    If Not 'b' Return False
    Return True

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev


  

What Can We Do With a TM?
● Last time, we saw TMs that

– check if a string has the form anbn,
– check if a string has the same number of a’s and b’s and
– sort a string of a’s and b’s.

● Here’s a list of some other things TMs can do; we’ll give 
you these TMs with the starter files for PS8 this week.
– Check if a number is a Fibonacci number.
– Convert the number n into a string of n a’s.
– Check if a string is a tautonym (the same string repeated twice).
– So much more!

● This hints at the idea that TMs might be more powerful 
than they look.



  

New Stuff!



  

Main Questions for Today:

Just how powerful are Turing machines?

What problems can you solve with a computer?



  

Real and “Ideal” Computers
● A real computer has memory limitations: you 

have a finite amount of RAM, a finite amount of 
disk space, etc.

● However, as computers get more and more 
powerful, the amount of memory available keeps 
increasing.

● An idealized computer is like a regular 
computer, but with unlimited RAM and disk 
space. It functions just like a regular computer, 
but never runs out of memory.



  

Theorem: Turing machines are equal in 
power to idealized computers. That is, 
any computation that can be done on a 

TM can be done on an idealized computer 
and vice-versa.



  

Key Idea: Two models of computation
are equally powerful if they can

simulate each other.



  

Simulating a TM
● The individual commands in a TM are simple and 

perform only basic operations:
Move   Write   Goto   Return   If 

● The memory for a TM can be thought of as a string 
with some number keeping track of the current index.

● To simulate a TM, we need to
– see which line of the program we’re on,
– determine what command it is, and
– simulate that single command.

● Claim: This is reasonably straightforward to do on an 
idealized computer.
– My “core” logic for the TM simulator is under fifty lines of 

code, including comments.



  

Simulating a TM
● Because a computer can simulate each 

individual TM instruction, an idealized 
computer can do anything a TM can do.

● Key Idea: Even the most complicated 
TM is made out of individual 
instructions, and if we can simulate 
those instructions, we can simulate an 
arbitrarily complicated TM.



  

Simulating a Computer
● Programming languages provide a set of simple 

constructs.
– Think things like variables, arrays, loops, functions, 

classes, etc.
● You, the programmer, then combine these basic 

constructs together to assemble larger 
programs.

● Key Idea: A TM is powerful enough to simulate 
each of these individual pieces. It’s therefore 
powerful enough to simulate anything a real 
computer can do.



  

A Leap of Faith
● Claim: A TM is powerful enough to simulate any 

computer program that gets an input, processes 
that input, then returns some result. 
 

● The resulting TM might be colossal, or really slow, 
or both, but it would still faithfully simulate the 
computer.

● We're going to take this as an article of faith in 
CS103. If you curious for more details, come talk to 
me after class.

Computational
Device

Yep

Nah

input



  

Can a TM Work With…

Sure! A picture is 
just a 2D array of 
colors, and a color 
can be represented 

as a series of 
numbers.

“cat pictures?”



  

Can a TM Work With…

If you think about 
it, a video is just a 
series of pictures!

“cat videos?”
“cat pictures?”



  

Can a TM Work With…

Sure! Music is encoded as a 
compressed waveform. That’s 

just a list of numbers.

“music?”

Sure! That’s just applying a 
bunch of matrices and 

nonlinear functions to some 
input.

“ChatGPT?”



  

Just how powerful are Turing machines?



  

The Church-Turing Thesis claims that

every feasible method of computation
is either equivalent to or weaker than

a Turing machine.

“This is not a theorem – it is a
falsifiable scientific hypothesis.
And it has been thoroughly
tested!”

- Ryan Williams



  

Regular
Languages CFLs

All Languages

Problems 
Solvable by 

Turing 
Machines



  

Time-Out for Announcements!



  

Problem Set 8
● Problem Set Seven was due today at 1:00PM.

– You can use a late day to extend the deadline to 1:00PM on 
Saturday.

● Problem Set Eight goes out today. It’s due next Sunday at 
1:00PM, but designed so that it can be completed by next 
Friday.
– Construct context-free grammars and explore their expressive 

power.
– Dive deeper into the structure of languages and functions 

between languages.
– Tinker with TMs and what it’s like to build all computation from 

smaller pieces.
● You know the drill: come talk to us if you have any 

questions, and let us know what we can do to help out.



  

Grand River Solutions Email
● We’re part of Stanford’s exam proctoring 

pilot this quarter. The consultancy Grand 
River Solutions is assisting with the 
rollout.

● You should have received an email asking 
for your feedback. The AIWG would 
appreciate your input, and it should take 
at most five minutes to fill out.



  

Back to CS103!



  

Decidability and Recognizability



  

What problems can we solve with a computer?

What does it 
mean to “solve” 
a problem?



  

The Hailstone Sequence
● Consider the following procedure, 

starting with some n ∈ ℕ, where n > 0:
– If n = 1, you are done.
– If n is even, set n = n / 2.
– Otherwise, set n = 3n + 1.
– Repeat.

● Question: Given a natural number n > 0, 
does this process terminate?
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· If n = 1, stop.
 

· If n is even, set n = n / 2.
 

· Otherwise, set n = 3n + 1.
 

· Repeat.



  

The Hailstone Sequence
● Consider the following procedure, starting with 

some n ∈ ℕ, where n > 0:
– If n = 1, you are done.
– If n is even, set n = n / 2.
– Otherwise, set n = 3n + 1.
– Repeat.

● Does the Hailstone Sequence terminate for…
– n = 5?  Yes, after 5 steps.
– n = 20? Yes, after 7 steps.
– n = 7?  Yes, after 16 steps.
– n = 27? Yes, after 111 steps.

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev


  

The Hailstone Turing Machine
● Let Σ = {a} and consider the language

   L = { an | n > 0 and the hailstone
                   sequence terminates for n }.

● We can build a TM for L as follows:
If the input is ε, reject.
While the string is not a:

If the input has even length, halve the length of 
the string.
If the input has odd length, triple the length of 
the string and append a a.

Accept.



  

Does this Turing machine accept all 
nonempty strings?



  

The Collatz Conjecture
● It is unknown whether this process will 

terminate for all natural numbers.
– In other words, no one knows whether this TM 

always terminates!
● The conjecture (unproven claim) that the 

hailstone sequence always terminates is called 
the Collatz Conjecture.

● This problem has eluded a solution for a long 
time. The influential mathematician Paul Erdős 
is reported to have said “mathematics may not 
be ready for such problems.”



  

An Important Observation
● Unlike finite automata, which automatically halt 

after all the input is read, TMs keep running 
until they explicitly return true or return false.

● As a result, it’s possible for a TM to run forever 
without accepting or rejecting.

● This leads to several important questions:
– How do we formally define what it means to build a 

TM for a language?
– What implications does this have about problem-

solving?



  

Very Important Terminology
● Let M be a Turing machine.
● M accepts a string w if it returns true on w.
● M rejects a string w if it returns false on w.
● M loops infinitely (or just loops) on a string w if when run on w 

it neither returns true nor returns false.
● M does not accept w if it either rejects w or loops on w.
● M does not reject w w if it either accepts w or loops on w.
● M halts on w if it accepts w or rejects w.

Accept
Loop

Reject
does not accept                                     

does not reject                               

halts



  

● A TM M is called a recognizer for a language L over Σ if 
the following statement is true:

∀w ∈ Σ*. (w ∈ L  ↔  M accepts w)
● A language L is called recognizable if there is a 

recognizer for it.
● If you are absolutely certain that w ∈ L, then running a 

recognizer for L on w will (eventually) confirm this.
– Eventually, M will accept w.

● If you don’t know whether w ∈ L, running M on w may 
never tell you anything.
– M might loop on w – but you can’t differentiate between “it’ll 

accept if you wait longer” and “it will never come back with an 
answer.”

● Does this feel like “solving a problem” to you?

Recognizers and Recognizability



  

● The hailstone TM M we saw earlier is a recognizer 
for the language

L = { an | n > 0 and the hailstone
                         sequence terminates for n }.

● If the sequence does terminate starting at n, then 
M accepts an.

● If the sequence doesn’t terminate, then M loops 
forever on an and never gives an answer.

● If you somehow knew the hailstone sequence 
terminated for n, this machine would (eventually) 
confirm this. If you didn’t know, this machine 
might not tell you anything.

Recognizers and Recognizability



  

● Earlier this quarter you explored sums of 
five cubes. Now, let’s talk about sums of 
three cubes.

● Are there integers x, y, and z where…
– x3 + y3 + z3 = 10? Yes! x = 2, y = 1, z = 1.
– x3 + y3 + z3 = 11? Yes! x = 3, y = -2, z = -2.
– x3 + y3 + z3 = 12? Yes! x = 7, y = 10, z = -11.
– x3 + y3 + z3 = 13? Nope!

Recognizers and Recognizability

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev


  

● Surprising fact: until 2019, no one knew 
whether there were integers x, y, and z where

x3 + y3 + z3 = 33.
● A heavily optimized computer search found this 

answer:
x = 8,866,128,975,287,528
y = -8,778,405,442,862,239
z = -2,736,111,468,807,040

● As of May 2024, no one knows whether there 
are integers x, y, and z where

x3 + y3 + z3 = 114.

Recognizers and Recognizability



  

● Consider the language
L = { an | ∃x ∈ ℤ. ∃y ∈ ℤ. ∃z ∈ ℤ. x3 + y3 + z3 = n }

● Here’s pseudocode for a recognizer to see whether such 
a triple exists:

for max = 0, 1, 2, …                  
  for x from -max to +max:            
    for y from -max to +max:          
      for z from -max to +max:        
        if x3 + y3 + z3 = n: return true

● If you somehow knew there was a triple x, y, and z 
where x3 + y3 + z3 = n, running this program will 
(eventually) convince you of this.

● If you weren’t sure whether a triple exists, this 
recognizer might not be useful to you.

Recognizers and Recognizability



  

Recognizers and Recognizability
● The class RE consists of all recognizable languages.
● Formally speaking:

RE = { L | L is a language and there’s a recognizer for L }
● You can think of RE as “all problems with yes/no 

answers where “yes” answers can be confirmed by a 
computer.”
– Given a recognizable language L and a string w ∈ L, running a 

recognizer for L on w will eventually confirm w ∈ L.
– The recognizer will never have a “false positive” of saying 

that a string is in L when it isn’t.
● This is a “weak” notion of solving a problem.
● Is there a “stronger” one?



  

Deciders and Decidability
● Some, but not all, TMs have the following 

property: the TM halts on all inputs.
● If you are given a TM M that always halts, then 

for the TM M, the statement “M does not 
accept w” means “M rejects w.”

Accept

Reject
                          halts (always)

does not accept                                   

does not reject                                   



  

Deciders and Decidability
● A TM M is called a decider for a language L over Σ if the 

following statements are true:
∀w ∈ Σ*. M halts on w.

∀w ∈ Σ*. (w ∈ L   ↔   M accepts w)
● A language L is called decidable if there is a decider for it.
● A decider M for a language L accepts all strings in L and 

rejects all strings not in L.
● A decider M for a language L is a recognizer for L that halts 

on all inputs.
● Intuitively, if you don’t know whether w ∈ L, running M on w 

will “create new knowledge” by telling you the answer.
● This is a “strong” notion of “solving a problem.”



  

Deciders and Decidability
● While no one knows whether there are 

integers x, y, and z where
x3 + y3 + z3 = 114,

it is very easy to figure out whether there 
are integers x, y, and z where

x2 + y2 + z2 = 114.
● Take a minute to discuss – why is this?



  

● Consider the language
L = { an | ∃x ∈ ℤ. ∃y ∈ ℤ. ∃z ∈ ℤ. x2 + y2 + z2 = n }.

● Here’s pseudocode for a decider to see whether 
such a triple exists:

for x from 0 to n:                  
  for y from 0 to n:                
    for z from 0 to n:              
      if x2 + y2 + z2 = n: return true
return false                        

● After trying all possible options, this program will 
either find a triple that works or report that none 
exists.

Deciders and Decidability



  

Deciders and Decidability
● The class R consists of all decidable languages.
● Formally speaking:

R = { L | L is a language and there’s a decider for L }
● You can think of R as “all problems with yes/no 

answers that can be fully solved by computers.”
– Given a decidable language, run a decider for L and see what 

happens.
– Think of this as “knowledge creation” – if you don’t know 

whether a string is in L, running the decider will, given 
enough time, tell you.

● The class R contains all the regular languages, all the 
context-free languages, most of CS161, etc.

● This is a “strong” notion of solving a problem.



  

R and RE Languages
● Every decider for L is also a recognizer for L.
● This means that R ⊆ RE.
● Hugely important theoretical question:

R ≟ RE
● That is, if you can just confirm “yes” answers to 

a problem, can you necessarily solve that 
problem?



  

Regular
Languages CFLs

All Languages

R

RE

Which Picture is Correct?



  

Regular
Languages CFLs

All Languages

R RE

Which Picture is Correct?



  

Unanswered Questions
● Why exactly is RE an interesting class of 

problems?
● What does the R  ≟ RE question mean?
● Is R = RE?
● What lies beyond R and RE?
● We'll see the answers to each of these in 

due time.



  

Next Time
● Emergent Properties

– Larger phenomena made of smaller parts.
● Universal Machines

– A single, “most powerful” computer.
● Self-Reference

– Programs that ask questions about 
themselves.
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